

Thermally Conductive Filler Materials

APPLICATION

Thermal interface products (Sheets, Grease, Adhesive) | Integrated circuits, etc. | Additive to various thermosetting resins, thermoplastic resins, rubber, etc.

Resonac Corporation

High Performance Material Business Headquarters **Ceramics Business Unit**

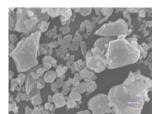
> Issue: 5, Nov., 2015 Revise: 15, Oct., 2024

✓ RESONAC manufactures several kinds of Alumina and Hexagonal Boron Nitride. These have excellent characteristics for rubber and resin-based thermal conductive fillers.

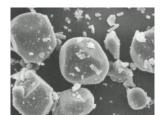
♦ Low-soda Alumina (AL Series)

The AL series is α -alumina which has reduced soda content, controlled by our proprietary technology. The AL series has several shapes and particle size distributions in production. Extra fine alumina particles are used as an ingredient in resins alongside coarse ingredients.

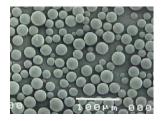
→Roundish Alumina (AS Series)

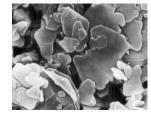

The AS series is a single-grained alumina with less crystal edges. Since the AS series has a large particle diameter and broad particle size distribution, it excels at filling resin and producing compounds with low viscosity and good fluidity.

♦ Spherical Alumina (Alunabeads CB Series)


Alunabeads, also known as our CB series, is a spherical single-grained alumina. CB produces compounds with high filling rates and good viscosity. The CB series is featuring various particle sizes and particle distributions to meet your requirements.

+Hexagonal Boron Nitride (SHOBN UHP Series)


SHOBN, our UHP series is a high purity crystalized Hexagonal Boron Nitride. SHOBN has excellent thermal conductivity, high thermal stability, corrosion resistance, and good electrical characteristics (high electrical insulation, low dielectric constant). The UHP series is used for high heat radiation applications which require electrical insulation.


Low-soda (AL series)

Roundish (AS series)

Spherical (Alunabeads CB Series)

Hexagonal Boron Nitride (UHP series)

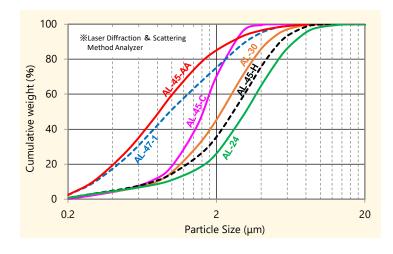
Comparison of thermal filler properties

Filler	Shape	Mean particle size	Features (filler or compound property)
Low soda Alumina (AL series)	Polygonal	1∼2 µm	Low impurity (soda) property, Thixotropy
Roundish Alumina (AS series)	Roundish	9 ∼ 36 µm	High filling, High purity, Low abrasion, High fluidity
Spherical Alumina (Alunabeads CB series)	Spherical	2 ~ 100 μm	High filling, high purity, Low abrasion, High fluidity
Hexagonal Boron Nitride (UHP series)	Platelets	0.7 ~ 11 μm	Low specific gravity、Low abrasion、Electrical insulation、Low dielectric constant, Thermal and Chemical stability

Application examples

Thermal interface products (Sheets, Greases, Adhesives), IC circuits, etc., as an additive to various thermosetting, thermoplastic resins, rubbers, etc.

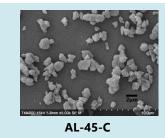
*The data shown above are representative figures. They are not guaranteed values.



<Typical properties of common grades>

		AL-45-AA	AL-47-1	AL-45-C	AL-30	AL-45-H	AL-24	
	L.O.I %1	%	0.25	0.29	0.22	0.15	0.19	0.15
	Fe ₂ O ₃	%	0.02	0.01	0.02	0.02	0.02	0.01
Chemical Composition	SiO ₂	%	0.02	0.03	0.08	0.06	0.03	0.03
Composition	Na ₂ O	%	0.03	0.05	0.04	0.04	0.02	0.03
	Al ₂ O ₃	%	99.68	99.62	99.64	99.73	99.75	99.78
Mean Partic	le Size (d ₅₀)	μm	0.8	1.0	1.5	2.1	2.6	3.1
BET Specific S	Surface Area	m²/g	3.6	3.2	1.9	1.4	1.5	1.3
Bulle Doneitue	Loose	g/cm ³	0.7	0.7	0.8	0.7	0.9	0.9
Bulk Density	Тар	g/cm³	1.2	1.1	1.1	1.1	1.4	1.4

^{★1} Loss on ignition


<Particle Size Distribution>

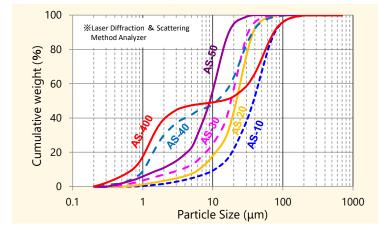


<Features and Advantages>

- 1. AL series is α -alumina which has reduced soda content. AL series has several crystal sizes, shapes, and distributions in production.
- 2. AL series has excellent dispersability, making it suitable for thermal filler.
- 3. Extra fine alumina particles are used as an ingredient in resins alongside coarse ingredients.

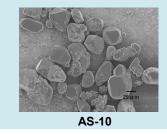
<SEM Images >

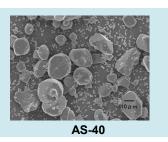
XThe data shown above are representative figures. They are not guaranteed values.


Roundish alumina (AS series)

<Typical properties of common grades>

			AS-10	AS-20	AS-30	AS-40	AS-50	AS-400
	L.O.I %1	%	0.06	0.08	0.11	0.11	0.19	0.12
	Fe ₂ O ₃	%	0.03	0.02	0.03	0.02	0.06	0.02
	SiO ₂	%	0.02	0.04	0.04	0.04	0.05	0.03
Chemical Composition	Na ₂ O	%	0.02	0.02	0.02	0.02	0.02	0.02
Composition	Na+ **2	ppm	3	3	3	50	7	32
	Cl-	ppm	1	1	1	2	1	1
	Al ₂ O ₃	%	99.87	99.84	99.80	99.81	99.68	99.81
Mean Particle	Size (d ₅₀)	μm	36	22	19	14	9	19
Top cut S	ize	μm	105	75	75(or 45)	-	75(or 45)	-
BET Specific Sur	face Area	m²/g	0.4	0.6	0.9	0.8	1.7	1.1
Dulle Donsitu	Loose	g/cm ³	1.8	1.8	1.6	1.5	1.5	1.4
Bulk Density	Тар	g/cm³	2.4	2.4	2.2	2.1	2.0	2.0
Electro Condu	ctivity ^{※3}	μS/cm	3	3	4	26	10	33


<Particle Size Distribution>



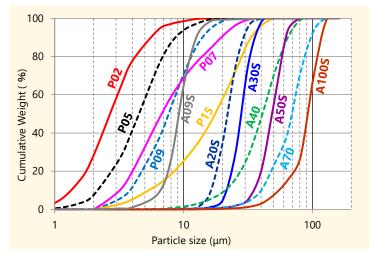
<Features and Advantages>

- 1. Large particle sizes and broad particle size distributions allow for a high filling density in various resins.
- 2. Roundish shape makes AS Series suitable as a thermal filler with lower viscosity, and the shape also means large contact area between particles, increasing thermal conductivity of the compound.
- 3. Bimodal AS-400 is a grade specifically designed for achieving higher filling rates in resins.

<SEM Images>

XThe data shown above are representative figures. They are not guaranteed values.

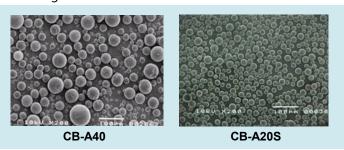
Spherical Alumina (Alunabeads CB series)



<Typical properties of common grades>

			CB -P02	CB -P05	CB -P07	CB -P09 (Develo pment)	CB -A09S	CB -P15	CB -A20S	CB -A30S	CB -A40	CB -A50S	CB -A70	CB -A100S
	L.O.I ^{※1}	%	0.07	0.05	0.05	0.03	0.04	0.04	0.03	0.03	0.04	0.02	0.02	0.03
	Fe ₂ O ₃	%	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.01
Chemical	SiO ₂	%	0.04	0.02	0.02	0.01	0.04	0.06	0.02	0.01	0.01	0.04	0.01	0.04
Composition	Na₂O	%	0.04	0.03	0.14	0.06	0.11	0.06	0.03	0.01	0.02	0.01	0.06	0.00
	Na+ ^{※2}	ppm	8	5	23	10	15	6	10	8	21	6	30	8
	Al ₂ O ₃	%	99.88	99.91	99.79	99.9	99.8	99.82	99.91	99.94	99.92	99.92	99.89	99.92
Mean Particle	Size (d ₅₀)	μm	3	4	7	8	9	16	21	28	46	50	71	97
BET Spec Surface Ar		m²/g	1.1	0.6	0.4	0.4	0.3	0.3	0.2	0.2	0.2	0.1	0.1	0.1
Bulls Donsitus	Loose	g/cm ³	0.9	1.2	1.4	1.3	2.2	1.7	2.1	2.1	2.1	2.1	2.1	2.2
Bulk Density	Тар	g/cm ³	2.0	2.2	2.5	2.4	1.8	2.5	2.3	2.3	2.4	2.3	2.4	2.4
Electro Condu	ıctivity ^{※4}	μS/cm	12	17	20	8	8	8	7	6	17	4	24	48

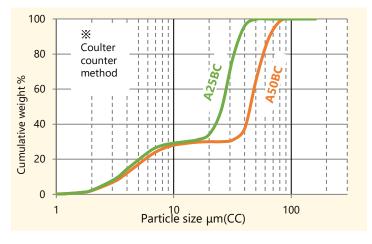
%1 Loss on ignition %2 Warm water extraction (95°C, 5Hr) %3 Coulter counter method %4 20g/200ml purified water


<Particle Size Distribution>

<Features and Advantages>

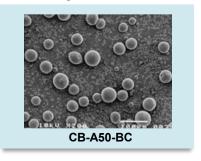
- 1. Spherical shape allows for especially high filling into resin. It is especially suitable for applications which require high fluidity.
- 2. CB-A20S, A30S, A50S, A100S grades have a sharp particle size distribution, while CB-P02, P05, P07, P10, P15, A40, A70 grades have a broad particle size distribution.
- 3. CB Series has good properties for special abrasives in addition to insulation and thermal filler *applications*.

<SEM Images>


*The data shown above are representative figures. They are not guaranteed values.

<Typical properties of common grades>

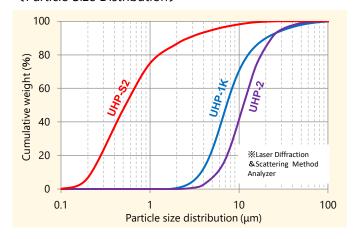
				CB-A25BC	CB-A50BC	
		L.O.I ^{※1}	%	0.04	0.02	
		Fe ₂ O ₃	%	0.01	0.01	
Chemical		SiO ₂	%	0.02	0.02	
Compositio	n	Na₂O	%	0.03	0.02	
		Na ^{+※2}	ppm	15	8	
		Al ₂ O ₃	%	99.90	99.93	
Mean	Part	icle Size (d ₅₀) ^{※3}	μm	26	45	
BET S	pecif	ic Surface Area	m²/g	0.3	0.2	
Bulk Doneit		Loose	g/cm³	1.6	1.5	
Bulk Densit	Ly	Тар	g/cm³	2.3	2.4	
Ele	Electro Conductivity ^{※4}		μS/cm	17	12	
Viscosity	Eļ	poxy resin (250PHR)	Poise	630	590	
Viscosity	Sili	icone resin (600PHR)	Poise	550	420	


<Particle Size Distribution>

<Features and Advantages>

- 1. Alunabeads CB Blend Series ("BC") is a series of bimodal grades for achieving even higher filler rates in various resins.
- 2. In addition, we can offer several blends of different alumina types. We are open to work on customized blends, as well.

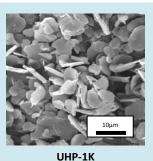
<SEM images>

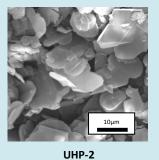

XThe data shown above are representative figures. They are not guaranteed values.

<Typical properties of common grades>

	Shape		Platelet				
			UHP-S2	UHP-1K	UHP-2		
	B ₂ O ₃	%	0.04	0.03	0.04		
Chemical	CaO	%	0.01	0.01	0.02		
Composition	С	%	0.02	0.02	0.02		
	BN	%	99.9	99.9	99.9		
Mean Particle	Size (d ₅₀)	μm	0.7	8	11		
BET Specific Surface Area		m²/g	8-12	3-5	3-5		
Bulk Density	у (Тар)	g/cm³	0.25	0.22	0.30		

<Particle Size Distribution>




<Features and Advantages>

- 1. SHOBN, our UHP Series, offers superior thermal conductivity, high thermal stability, corrosion resistance, and strong electrical characteristics (i. e. high electrical insulation, low dielectric constant).
- 2. SHOBN, UHP contains few impurities and has low dielectric constant, making it possible to produce durable materials without impairing the properties of mixed resins.
- 3. SHOBN, UHP is suitable for applications which require lubricity and mold-release efficiency.

<SEM images>

*The data shown above are representative figures. They are not guaranteed values.

Basic properties

basic prope	i ties								
Fillers		Al ₂ O ₃	h-BN	AIN	BeO	MgO	SiO ₂		
							Crystalline	Fused	
Cryst	al	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Cubic	Trigonal	Amorphous	
Density	g/am³	3.98	2.27	3.27	3.02	3.58	2.65	2.21	
Specific heat (Room temperature)	J/kg •℃	750	810	700	1090	960	740	770	
СТЕ	×10⁻⁶/ ℃	6	1	4.5	6.4	13	15	0.5	
Volume Resistivity	Ω/cm	10 ¹⁵	10 ¹⁴	>1014	>1014	10 ¹⁷	10 ¹⁵	>1017	
Dielectric constant	-	8.5	3.6~4.2	8.5	1	-	-	-	
Hardness	Mohs	9	2	8	9	5.5	7	7	
Notes				hydrophilic	toxicity				

Thermal conductivity

THEITHAI CO	110000	: - ,				_				
Material Di	Diamond	Silicon Carbide (SiC)	Beryllia (BeO)	Aluminum Nitride (AIN)	Hexagonal Boron Nitride (h-BN)	Silicon Nitride (Si ₃ N ₄)	Magnesium Oxide (MgO)	Aluminum Oxide (Al ₂ O ₃)	Silica (SiO ₂)	
	(C)								Crystalline	Fused
Thermal conductivity (W/m · k)	2000	270	250	70~270	①>200 ② several ③ 60	30~80	40	20~36	10	1.3
Notes		Semicond- uction	Toxicity		① X direction ② Z direction ③ Compact					

Source; TECHNICAL INFORMATION INSTITUTE.CO.LTD

%The data shown above are representative figures. They are not guaranteed values.