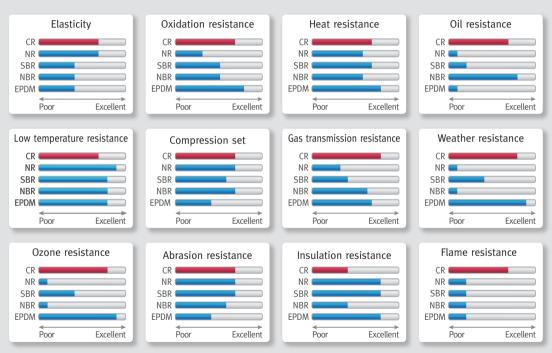
RESONAC

Chloroprene

Poly Chloroprene Rubber "Manufacturing since 1963"

Polychloroprene Rubber


What is Resonac Chloroprene?

Resonac Chloroprene rubber (CR) is a type of synthetic rubber used as an elastomer in the automotive (belts and

hoses), construction (waterproofing and sealing), wire and cable, adhesives, and many of other industries. Resonac Chloroprene has been produced for 60 years and continues to expand its application field. The properties of Resonac Chloroprene are highlighted by the high resistances to sunlight, ozone, flame, weathering, many oils and chemicals, low and high temperatures, and toughness against abrasion and general wear. The versatile properties have long been the key to Resonac Chloroprene's utility as a multi-purpose rubber. The product is available in over 30 grades, produced as either dry chips or aqueous dispersions (Latex).

Well balanced elastomer CR

^{*}These figures are only for reference purposes and do not serve as specifications

Historical Overview

Location

Plant: Kawasaki, Japan

Footprints

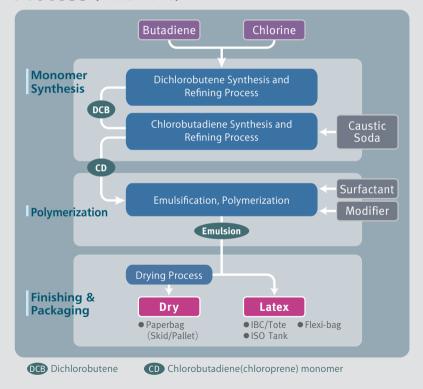
1960: Established Showa Neoprene (Showa Denko 50%, DuPont 50%)

1963: Started Neoprene production at Kawasaki plant with DuPont technology

2002: Terminated JV and started CR business as Showa Denko

2023: Changed company and product name from Showa Denko to Resonac

Process


1963: Started production with Acetylene process

1972: Converted to butadiene process, developed by DuPont, for safety concerns

Quality & Environment Management

ISO9001, ISO14001, OSHMS

Process (Butadiene)

LATEX Aqueous Dispersion

Resonac Chloroprene latexes are emulsions of polymerized chloroprene dispersed in water; containing emulsifying agents and stabilizers. The latexes are viscous off-white liquids which solid contents are ranged from 42% to 60%. Resonac chloroprene latex is available in over 15 different grades, each tailored to meet the requirements of specific end uses.

Water-based adhesives

Foam to foam, Shoe sole bonding, Contact adhesive, High pressure laminate, Metal bonding

Dipped goods Surgical gloves, Industrial gloves, Medical breathing bags

Construction & Coating

Asphalt emulsion, Mortar modification, Waterproof coating, Roofing

Others Sealant, Mattress, Textile coating, Flame retardant foam

It is intended for use by persons having technical skill, at their own discretion and risk. Do not use in medical applications involving permanent implantation in the human body. For other medical applications contact your Resonac customer service representative.

DRY CHIP General Purpose

Resonant Chloroprene is available in a dry chip form. There are around 20 dry grades which cover a wide range of properties and performance to meet the requirements from automobile, adhesive, construction and general rubber industrial fields.

Automotive

Transmission belt, Hose, Engine mount

Foam to foam, Carpet backing, High pressure laminate

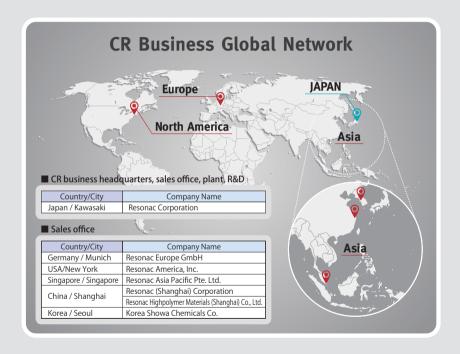
Industrial

Conveyor belt, Gasket, Boots seal, O-ring, Wire and cable

Construction

Bearing pad, Joint, Rubber sheet

Others


Sponge, Escalator handrail, Mattress

It is intended for use by persons having technical skill, at their own discretion and risk. Do not use in medical applications involving permanent implantation in the human body. For other medical applications contact your Resonac customer service representative.

About us

Profile Resonac Corporation

Under the purpose of "Contribute to the sustainable development of global society by creating functions required of the times as an advanced material partner", Resonac was established in January 2023, integrating Showa Denko and Hitachi Chemicals. The name "Resonac" was created by combining the word "resonate" with the "c" of "chemistry".

Business Segment

Semiconductor and Electronical Materials Segment

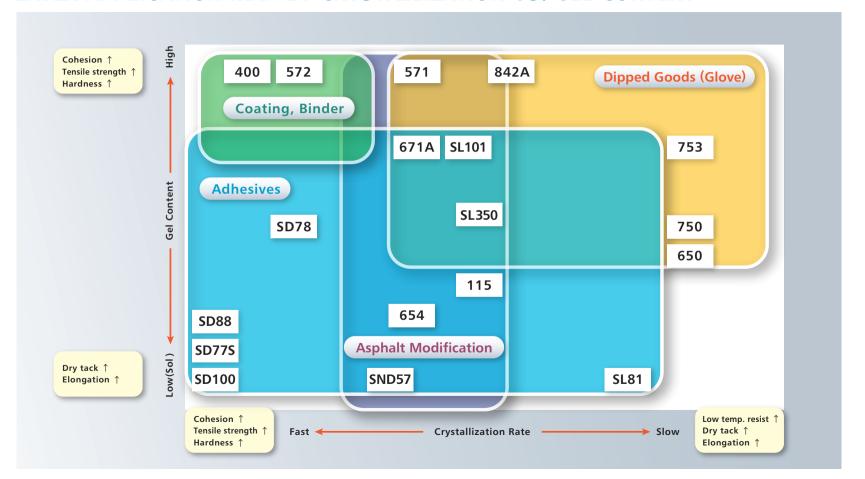
Front-end semiconductor materials, Back-end semiconductor materials, Hard-disks, Silicon carbide (SiC)

Mobility Segment

Automotive products, Lithium-ion battery materials

Chemicals Segment

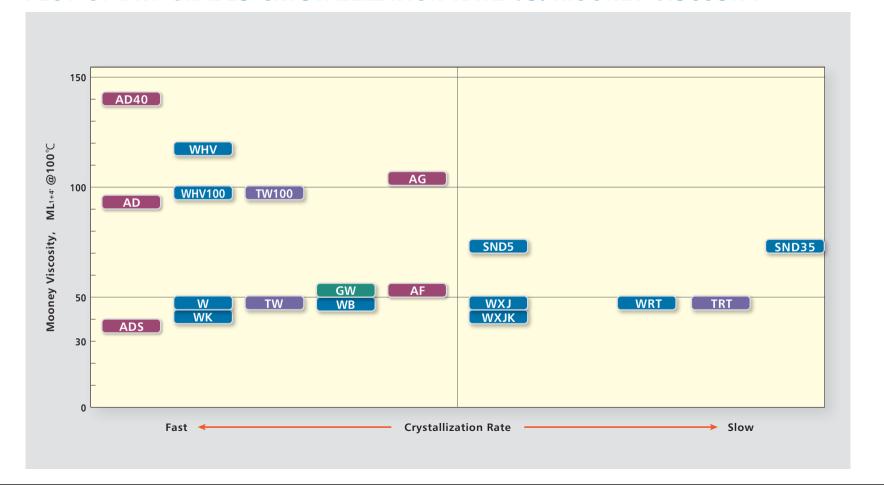
Petrochemicals, Basic Chemicals and industrial gases, Graphite electrodes


Innocation Enabling Materials Segment

Functional chemicals, Resin materials, Coating materials, Ceramics, Aluminium specialty components

Other Segment medical

LATEX APPLICATION MAP BY CRYSTALLIZATION VS. GEL CONTENT


RESONAC CHLOROPRENE LIQUID DISPERSION PROPERTIES (Typical Values)

Grades	400	750	753	650	654	842A	671A	572	571	SND57	SD77S	SD88	SD100	SD78	SL101	115	SL350	SL81
Polarity	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Anionic	Non ionic	Non ionic	Non ionic	Non ionic
Polymer Construction	Copolymer	Copolymer	Copolymer	Copolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Homopolymer	Copolymer	Copolymer	Copolymer
Main Feature	Ozone and weather resistance	ner Excellent flexibility			Low modulus	Fast curing	Good wet strength	Fast crystallizing	General purpose	Good tackiness	Water based adhesives for			Water based adhesives for high pressure laminate	Non-ionic	Non-ionic Carboxylated	Non-ionic Carboxylated	Non-ionic Carboxylated
Solids Content, %	49	50	50	60	59	50	59	50	50	58	57	42.5	57	60.5	59	47.5	47	46.5
Application and Other Characteristics	Bonded fibers Coatings Adhesives	* Adhesives * Dipped goods * Non-woven fabric * Low modulus * Excellent elasticity	*Adhesives *Dipped goods *Non-woven fabric *Low modulus *Accelerator free	* Dipped goods * Adhesives * Foam * Sealant * High solid same polymer as 750	Dipped goods Fabric impregnation (Binder)	*Treated paper *Bonded fibers *Dipped goods *Coatings *Carpet backing	* Dipped goods * Adhesives * Bonded fibers * Treated paper * Mastics	Adhesives Fabric impregnation (Binder)	* Dipped goods * Adhesives	Pressure sensitive adhesives Primer	Adhesives Excellent qu with decent		* Adhesives * Excellent quick break with decent stability * High solid same polymer as SD88	Adhesives Heat creap resistance	Colloidal stability at low pH Asphalit modification	Contact adhesives Coatings Mastics Sealant Asphalit modification	Contact adhesives Coatings Asphalit modification Colloidal stability at low pH	Contact adhesives Pressure sensitive adhesive Colloidal stability at low pH
Physical Characteristics																		
pH, 25°C *1)	11.5	12	12	12	12	12	12	11.5	12	12	11	11	11	12	12	7	6	7
Specific gravity, 25°C																		
Latex	1.15	1.12	1.12	1.13	1.13	1.11	1.13	1.11	1.11	1.13	1.12	1.10	1.12	1.13	1.13	1.09	1.09	1.08
Polymer	1.41	1.27	1.27	1.27	1.23	1.23	1.23	123	123	1.23	1.23	1.23	1.23	1.23	1.23	1.24	1.23	1.23
Brookfield viscosity, mPa-s, 25°C (Spindle No.1, 60rpm)	8	10	10	400 ^{*2)}	40	15	40	10	10	35	100*2)	10	120 ^{*2)}	30	200*2)	300 ^{*2)}	300 ^{*2)}	200*2)
Polymer type	High gel	Mid.gel	High gel	Mid.gel	Low gel	High gel	Mid-high gel	High gel	High gel	Sol	Sol	Sol	Sol	Mid.gel	Mid-high gel	Mid.gel	Mid-high gel	Sol
Wet gel properties																		
Tensile strength	Very high	High	High	High	Medium	Medium	Very high	Medium	Medium	Low	Very high	Very high	Very high	Very high	High	High	High	Low
Elongation	High	High	High	High	High	Medium	High	Medium	Medium	Medium-high	High	High	High	High	High	Medium	Medium	Medium
Cure rate	Slow	Medium	Medium-fast	Medium	Medium	Fast	Medium-fast	Fast	Fast	Slow	Slow	Slow	Slow	Medium-fast	Medium-fast	Medium	Medium	Slow
Cured Film Properties																		
Modulus	Very high	Low	Low	Low	Low	Medium	High	High	High	Medium	High	High	High	High	Midhigh	Medium	Midhigh	Low
Tensile strength	High	Medium	Medium	Medium	Medium	Midhigh	High	High	High	Medium	High	High	High	High	Midhigh	Medium	Midhigh	Low
Crystallization rate	Extremely fast	Extremely slow	Extremely slow	Extremely slow	Medium-fast	Very slow	Medium-fast	Very fast	Medium	Medium	Extremely fast	Extremely fast	Extremely fast	Medium-fast	Medium-fast	Slow	Slow	Very slow

Note *1): pH values decline slowly upon ageing. *2): Spindle No.2

The information set forth herein is furnished free of charge, and is based on technical data that Resonac Corporation believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. The handling precaution information resolution for the precaution for their precision of the precaution for their precision of the precision of any compound under end disposal are outside our control, we make no waternatives, express or implied, and assume no liability in connection within a year of this information. As with any material evaluation of any compound under end disposal are understanding to the precision of any compound under end disposal are understanding to the precision of the prec

PLOT OF DRY GRADES CRYSTALLIZATION RATE VS. MOONEY VISCOSITY

RESONAC CHLOROPRENE DRY GRADE PROPERTIES (Typical Values)

GENERAL PURPOSE

Туре	Grades	Mooney Viscosity [ML 1+4, 100℃]	Crystallization Rate	Other Characteristics				
G Types (Sulfur-modified group)	GW	34 — 52	Slow	Sulfur modified G type with better heat and compression set resistance than GN				
	W	42 — 51	Medium	Standard grade for general purposes				
W Types (Basic group)	WHV	109 — 130	Medium	Higher viscosity version of W for high loading application and general adhesives				
	WHV100	95 — 105	Medium	Lower viscosity version of WHV				
	WXJ	42 — 51	Very Slow	Good low tempetature properties for general use				
W Types (Crystallization resistant group)	SND5	67 — 76	Very Slow	Higher viscosity version of WXJ				
	WRT	42 — 51	Extremely slow	Excellent low temperature properties				
W Types (Extrusion & calendering)	WB	42 — 51	Medium	Best extrusion and calendering properties				
	WK	42 — 51	Medium	Better mold release version of W with good mill-and flow-ability				
W Types (Low mold fouling group)	WXJK	42 — 51	Very Slow	Improved mold release version of WXJ with good mill-ability				
	SND35	63 — 73	Extremely slow	More excellent low temperature properties of WRT with improved mold release for injection molding goods				
T Types	TW	42 — 51	Medium	Superior extrusion and calendering grade with good tensile properties				
(Specific group for extrusion,	TW100	85 — 102	Medium	Higher viscosity version of TW for high loading use				
calendering)	TRT	42 — 51	Extremely slow	Excellent low temperature properties with better processability				
	ADS	10-35*	Very fast	Low solution viscosity version of AD. Low VOC adhesive potential				
	AD	33 – 46 *	Very fast	Adhesives and paints use with good solution viscosity stability				
A Types (Adhesive application)	AD40	76 — 115 *	Very fast	High solution viscosity version of AD				
	AF	40 115 **	Slow	Excellent hot bond strength, carboxylated				
	AG	80 — 140	Medium-Slow	Excellent sprayability, thixotropic				

Note *: Brookfield viscosity of 5% raw polymer solution in toluene at 25℃, [mPas] **: Brookfield viscosity of 10% raw polymer solution in toluene/hexane (60/40 vol/vol) at 25℃, [mPas]

The information set forth herein is furnished free of charge and is based on technical data that Resonac Corporation believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. The handling precaution information contained herein is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health for safety hazaros. Because conditions of use or implied, and assume no liability in connection within a you set this information. As with any material, evaluation of any compound under end use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on any patents. CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your Resonac Customers and Particular Composition of high prior to the properties a trademark of Resonac Corporation Copyright 2016 Resonace Copyright 2016 Resonace Corporation Copyright 2016 Resonace Corporation Copyright 2016 Resonace Corporation Copyright

RESONAC

Chloroprene

Poly Chloroprene Rubber "Manufacturing since 1963"

The information set forth herein is furnished free of charge and is based on technical data that Resonac Corporation believes to be reliable. It is intended for use by persons having technical skill at their own discretion and risk. The handling precaution information contained herein is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Because conditions of product use and disposal are out of our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on any patents.

CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, contact with your Resonac customer service representative.

Copyright 2023 Resonac Corporation All Rights Reserved.