
Resonac Corporation

A chemical company with individualized products

Thermally Conductive Filler Materials

APPLICATIONS

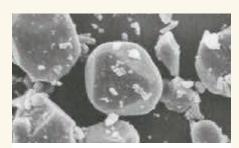
Thermal interface products (Sheets, Greases, Adhesives) | Integrated circuits, etc. | Additive to various thermosetting resins, thermoplastic resins, rubbers, etc.

INTRODUCTION

Resonac manufactures several kinds of Alumina and Hexagonal Boron Nitride. These have excellent charac-teristics for rubber and resin-based thermally conductive fillers.

Resonac offers a wide variety of thermally conductive fillers and is continually working to develop new, more effective grades. These include blends of various particle sizes and fillers and surface treated material.

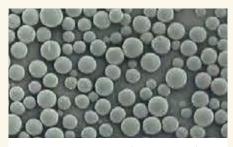
We can offer several blends of different alumina types. Please don't hesitate to contact our local sales offices for further details.


Aluminum Oxide (Al₂O₃)

Aluminum Oxide (Alumina) filler has been manufactured at Resonac Corporation for over 80 years and strides continue to be made in this market. Commonly referred to as alumina, Resonac supplies a wide variety of grades with unique and distinguishing features.

Roundish Alumina (AS Series)

THERMALLY CONDUCTIVE FILLER LINEUP


The AS series are single-grain corundums with fewer crystal edges. Since the AS series has a large particle diameter and broad particle size distribution, it excels at filling resin and producing compounds with low viscosity and good fluidity.

Roundish (AS series)

Spherical Alumina (Alunabeads™ CB Series)

Alunabeads[™], also known as our CB series, is a spherical single-grained alumina. CB series is featuring more than 10 grades and in addition we can propose customized products to meet your requirements. CB produces compounds with high filling rates and good viscosity.

Spherical CB Series (Alunabeads™)

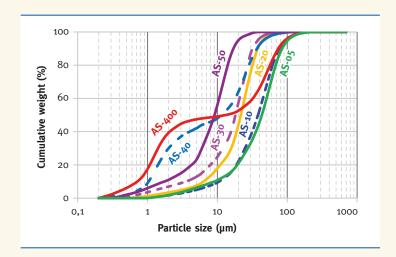
Hexagonal Boron Nitride (SHOBN™ UHP Series)

Our SHOBN™ UHP series is a high purity crystalized Hexagonal Boron Nitride. SHOBN™ has excellent thermal conductivity, high thermal stability, corrosion resistance, and good electrical characteristics (high electrical insulation, low dielectric constant). SHOBN™ is offered as both platelet and agglomerate types. By utilizing Resonac's proprietary technology, our agglomerate grade of hBN is particularly unique by providing exceptionally high particle hardness while maintaining a low level of impurities. The UHP series is used for high heat radiation appli-cations which require electrical insulation.

Hexagonal Boron Nitride (UHP series)

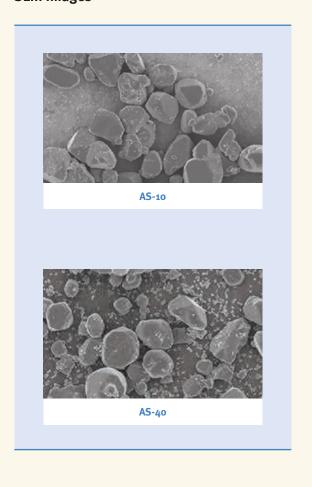
Comparison of Showa Denko Thermally Conductive Filler properties

Filler	Shape	Mean particle size	Features (filler or compound property)
Roundish Alumina (AS series)	Roundish	9 - 44 μm	High filling, High purity, Low abrasion, High fluidity
Spherical Alumina (Alunabeads™ CB)	Spherical	2 - 100 μm	High filling, High purity, Low abrasion, High fluidity
Hexagonal Boron Nitride (UHP series)	Platelets	0.2 - 12 μm	Low specific gravity, Low abrasion, Electrical insulation, Low dielectric constant, Thermal and Chemical stability
	Agglomerates		Platelets properties + High loading and High density


AS SERIES

Typical properties of common grades

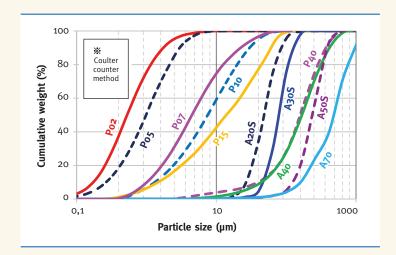
			AS-10	AS-20	AS-30	AS-40	AS-50	AS-400
Chemical	L.O.I [*] *	%	0.05	0.07	0.09	0.13	0.18	0.09
Composition	Fe ₂ O ₃	%	0.04	0.06	0.07	0.06	0.05	0.02
	SiO ₂	%	0.05	0.06	0.06	0.06	0.06	0.03
	Na₂O	%	0.03	0.03	0.03	0.04	0.03	0.03
	Na ⁺ [*] ²	ppm	3	3	3	50	7	32
	Cl ⁻ *²	ppm	1	1	1	2	1	1
	Al ₂ O ₃	%	99.83	99.78	99.75	99.71	99.68	99.87
Mean Particle S	Mean Particle Size (d ₅₀)**3		39	22	18	12	9	13
Top cut size		μm	105	75	75 (or 45)	-	75 (or 45)	-
BET Specific Su	ırface area	m²/g	0.5	0.8	1.0	1.2 1.9		1.2
Bulk Density	Loose	g/cm ³	1.8	1.8	1.6	1.5	1.5	1.4
	Тар	g/cm ³	2.4	2.4	2.2	2.1	2.0	2.0
Electric Conductivity**		μS/cm	3	4	5	31	11	29
Viscosity	Epoxy resin (25	oPHR)	95	110	135	102	130	-
(Pas)	Silicone resin (600PHR)	124	114	128	106	150	83


**1 Loss On Ignition, **2 Warm water extraction (100°C, 2Hr), **3 LASER DIFFRACTION AND SCATTERING METHOD ANALYZER **4 20g/100ml purified water, **The data shown above are representative figures. They are not guaranteed values.

Particle Size Distribution

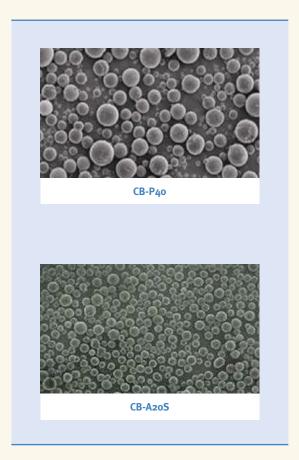
Features and Advantages

- Large particle sizes and broad particle size distributions allow for a high filling density in various resins.
- Roundish shape makes AS Series suitable as a thermal filler with lower viscosity.
- Roundish shape also means a large contact area between particles, increasing thermal conductivity of the compound.
- Bimodal AS-400 is a grade specifically designed for achieving higher filling rates in resins.


ALUNABEADSTM CB SERIES

Typical properties of common grades

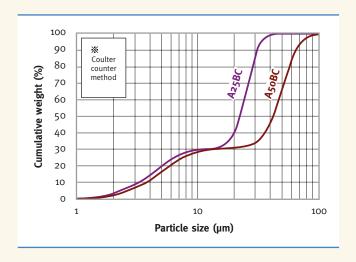
			CB -Po2	CB -Po5	CB -Po7	CB -P10	CB -P15	CB -A20S	CB -A3oS	CB -A40	CB -P40	CB -A50S	CB -A70	CB -A100S
Chemical	L.O.I [*] *	%	0.06	0.05	0.07	0.05	0.04	0.03	0.03	0.02	0.05	0.02	0.02	0.02
Composition	Fe ₂ O ₃	%	0.04	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.01
	SiO ₂	%	0.06	0.03	0.02	0.02	0.06	0.02	0.01	0.05	0.01	0.01	0.04	0.01
	Na ₂ O	%	0.02	0.01	0.19	0.07	0.06	0.03	0.01	0.01	0.07	0.01	0.06	0.02
	Na ⁺ [*]	ppm	5	4	17	5	6	10	8	7	20	6	30	5
	Al ₂ O ₃	%	99.82	99.89	99.71	99.85	99.82	99.91	99.94	99.91	99.86	99.92	99.89	99.94
Mean Particle Size (d ₅₀) ^{※3}	μm	2	4	7	8	16	21	28	40	44	50	71	94
Top cut size		μm	24	24	45	24	45	45	45	88	88	88	149	149
BET Specific Surface	e area	m²/g	1.1	0.7	0.6	0.6	0.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1
Bulk Density	Loose	g/cm ³	1.1	1.3	1.5	1.7	1.7	2.1	2.1	2.2	2.2	2.1	2.1	2.2
	Тар	g/cm ³	1.9	2.2	2.4	2.5	2.5	2.3	2.3	2.3	2.5	2.3	2.4	2.5
Electric Conductivity**4		μS/cm	8	9	11	6	8	7	6	7	74	4	24	5
Viscosity	Epoxy resin	(250PHR)	142	130	-	85	76	116	117	138	88	99	105	-
(Pas)	Silicone resir	ı (600PHR)	305	274	-	123	73	104	90	100	70	77	57	-


**1 Loss On Ignition, **2 Warm water extraction (100°C, 2Hr), **3 LASER DIFFRACTION AND SCATTERING METHOD ANALYZER **4 20g/100ml purified water, **The data shown above are representative figures. They are not guaranteed values.

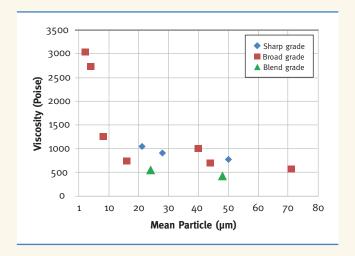
Particle Size Distribution

Features and Advantages

- Spherical shape allows for especially high filling into resin. It is especially suitable for applications which require high fluidity.
- CB-A2oS and CB-A5oS grades have a sharp particle size distribution, while CB-A4o, CB-A7o, CB-Po2, and CB-P4o grades have a broad particle size distribution.
- Alunabeads™ CB Series has good properties for special abrasives in addition to insulation and thermal filler applications.

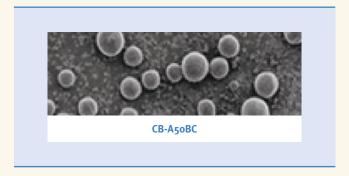

ALUNABEADS™ CB SERIES BLENDED

Typical properties of common grades


			CB-A25BC	CB-A50BC	
Chemical	L.O.I ^{¾¹}	%	0.04	0.03	
Composition	Fe ₂ O ₃	%	0.01	0.01	
	SiO ₂	%	0.08	0.04	
	Na ₂ O	%	0.06	0.01	
	Na ⁺ [*] ²	ppm	15	8	
	Al ₂ O ₃	%	99.81	99.90	
Mean Particle Size (d₅₀) ^{※³}		μт	24	48	
BET Specific Surface Area		m²/g	0.3	0.3	
Bulk Density	Loose	g/cm ³	-	-	
	Тар	g/cm ³	-	-	
Electric Conductivity ^{¾4}		μS/cm	17	12	
Viscosity (Pas)	Epoxy resin (250PHR)	Pas	63	59	
	Silicone resin (600PHR)	Pas	55	42	

**1 Loss On Ignition, **2 Warm water extraction (100°C, 2Hr), **3 LASER DIFFRACTION AND SCATTERING METHOD ANALYZER **4 20g/100ml purified water, **The data shown above are representative figures. They are not guaranteed values.

Particle Size Distribution



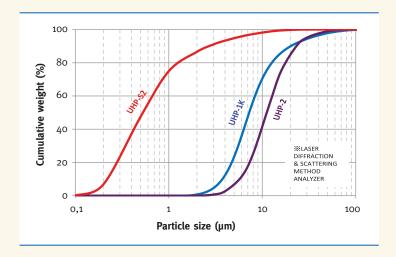
Viscosity with Silicone resin

Features and Advantages

- Alunabeads™ CB Blend Series ("BC") is a series of bimodal grades for achieving even higher filler rates in various resins.
- In addition, we can offer several blends of different alumina types. We are open to work on customized blends, as well.
 Please don't hesitate to contact your sales office for further details.

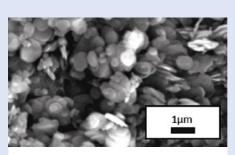
SHOBN™ UHP SERIES

Typical properties of common grades

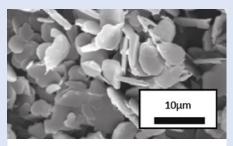

	Shape		Platelet					
			UHP-S2	UHP-1K	UHP-2			
Chemical	B ₂ O ₃	%	0.04	0.03	0.04			
Composition	CaO	%	0.01	0.01	0.02			
	С	%	0.02	0.02	0.02			
	BN	%	99.9	99.9	99.9			
Mean Particle Size (d₅₀) ^{¾¹}		μm	0.7	8	11			
BET Specific Surface Area		m²/g	8-12	3-5	3-5			
Bulk Density (Vibrat	tion)	g/cm³	0.25	0.22	0.30			

%1 Loss On Ignition,

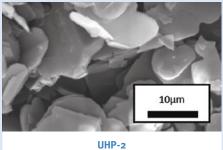
*The data shown above are representative figures.


They are not guaranteed values.

Particle size distribution: Platelet Type



Features and Advantages


- SHOBN™, our UHP Series, offers superior thermal conductivity, high thermal stability, corrosion resistance, and strong electrical characteristics (i. e. high electrical insulation, low dielectric constant).
- SHOBN™ has two different particle types, Platelet type and Agglomerated type.
- UHP-G1H, our newest product, has high hardness and high purity
- SHOBN™ UHP is suitable for applications which require lubricity and mold-release efficiency.

UHP-S2

UHP-1K

GENERAL OVERVIEW OF THERMALLY CONDUCTIVE FILLER MATERIALS

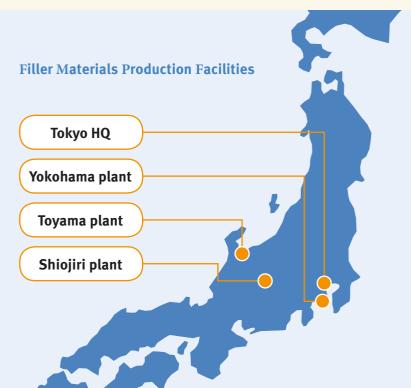
Basic properties

Material		Al203	h-BN	AlN	BeO	Mg0	SiO2 Crystalline	SiO2 Fused
Crystal shape		Hexagonal	Hexagonal	Hexagonal	Hexagonal	Cubic	Trigonal	Amorphous
Density	g/cm³	3.98	2.27	3.27	3.02	3.58	2.65	2.21
Specific heat (Room temp.)	J/kg ⋅°C	750	810	700	1090	960	740	770
СТЕ	x10 ⁻⁶ / °C	6	1	4.5	6.4	13	15	0.5
Volume Resistivity	Ω/cm	10 ¹⁵	1014	>10 ¹⁴	>10 ¹⁴	10 ¹⁷	10 ¹⁵	>10 ¹⁷
Dielectric constant	-	8.5	3.6~4.2	8.5	-	-	-	-
Hardness	Mohs	9	2	8	9	5.5	7	7
Notes				hydrophilic	toxicity			

Source: TECHNICAL INFORMATION INSTITUTE.CO.LTD

Thermal conductivity

Material	Diamond (C)	Silicon Carbide (SiC)	Beryllia (BeO)	Aluminum Nitride (AlN)	Hexagonal Boron Nitride (h-BN)	Silicon Nitride (Si3N4)	Magnesi- um Oxide (MgO)	Aluminum Oxide (Al2O3)	Silica (SiO2) Crystalline	Silica (SiO2) Fused
Thermal conductivity (W/m*k)	2000	270	270	70~270	1) >200 2) several 3) 60	30~80	40	20~36	10	1.3
Notes		Semi- conduc- tion	Toxicity		1) X direction 2) Z direction 3) Compact					


Source: TECHNICAL INFORMATION INSTITUTE.CO.LTD

Resonac Corporation Overview

Company Name: Head Office Location: Resonac Corporation 13-9, Shiba Daimon 1-chome, Minato-ku, Tokyo 105-8518,

Japan

