SHOWA DENKO K.K. Ver.10 material 2019/9/30

SiC epitaxial wafer **High Grade Epi Specification**

Items	Specification	Tolerance	Typical	Remark
Diameter	6"(150mm)	-	-	
Poly-type	4H	-	-	
Surface	(0001)Si-face	-	-	
Off-orientation	4deg-off	-	-	
Conductivity	n-type	-	-	
Dopant	Nitrogen	-	-	
Carrier Concentration	1E15-3E16	±12%~±20%	±8%	All Meas, points
Epi Thickness	5um~30um	±8%~±10%	±6%	All Meas, points
PDD	≤2.0/cm ²	-	0.3/cm ²	(THK5um~30um)
BPD 2mm yield	>92%	-	98%	Up to request

Notes

- 1) Other dimensional specifications are similar to definition in SEMI M12
- 2) Measurement points for Thickness and Carrier Concentration

15mm pitch 9pts (EE = 4mm) Thickness by FT-IR Carrier Concentration by Hg-CV

SHOWA DENKO K.K. Ver.10 material 2019/9/30

SiC epitaxial wafer 2nd Generation High grade epi

6inch n-type Epi (10um thickness)

Launched in 2019 Aug

Contact

Hiroshi Kanazawa |金澤博 Yukihisa Matsumura | 松村 有希久 Hiroaki Nakamura |中村 浩章

Device Solutions Division Marketing Department (SiC epitaxial wafer for power devices)

SHOWA DENKO K.K. | 昭和電工株式会社 1505, Shimo Kagemori, Chichibu, Saitama 369-1893 Japan

Tel: +81-494-23-6127, Fax: +81-494-25-0830

Mail: sdk_sic@showadenko.com

SHOWA DENKO K.K. Ver.10 material 2019/9/30

SiC epitaxial wafer Highly N-doped Epi layer (HNDE)

Epi: Drift Layer

Epi: Highly N-doped Epilayer

Epi: n+ Buffer Layer

n++ Substrate

Restraint of BPD expansion by remaining minority carrier due to shorter carrier life time using highly HNDE. **Tawara, et al Mater. Sci Forum 897 (2017) 419.

V_f shift of PiN diodes As function of BPD density in substrate

Xafter application of 960 A/cm²

N doping uniformity on 150mm wafer

XSIMS data

SHOWA DENKO K.K.

Ver.10 material 2019/9/30

SiC epitaxial wafer Thick epi performance

4inch n-type (~280um thickness)

PL measurement

Only one triangle defect can be detected by visual

No BPD propagated from the substrate

Thickness

Carrier Concentration

*) FTIR thickness evaluation can not be applied at very out side area (≥ 40mm)

Thicker layer sample shows good distribution on layer thickness and carrier concentration. Surface defect and BPD performance are also improved significantly even with 280um of thickness.

